UF UNIVERSITY of FLORIDA

Navigating the Metaverse: The Relation Between Scale and Expertise in Spatial Knowledge of Immersive and Desktop Virtual Reality

Introduction

- > Throughout evolutionary history, people navigated in real three-dimensional environments.
- Recently, desktop virtual reality (VR) and immersive VR (iVR) are becoming accessible.
- Playing video games is associated with increased visuospatial abilities, and spatial navigation skills^{1,2}.
- Variations in the mental representation scale of environments may account for the navigation performance differences between video game players and non-players.

environments: **small** and **large**.

a man)

spatial processing and temporal summation.

Ece Yüksel & Steven M. Weisberg | University of Florida, Department of Psychology

First-person shooters or navigationally active games result in better navigation and attention tasks after training¹.

However, gamers' cognitive processes underlying improved spatial navigation are not defined.

8. Conclusions & Future Directions

+ We replicated the first hypothesis that video game	not diff
experience supported spatial learning.	immers
 We did not observe any advantages for iVR in the 	- Ho
pointing task. We also did not find an interaction	sample
between immersion level and gaming experience.	relatior
 We did not find evidence in favor of H3; people did 	knowle

¹ Feng, J., Spence, I., & Pratt, J. (2007). Playing an Action Video Game Reduces Gender Differences in Spatial Cognition. Psychological Science, 18(10), 850–855.

² Ventura, M., Shute, V., Wright, T., & Zhao, W. (2013). An investigation of the validity of the virtual spatial navigation assessment. Frontiers in Psychology, 4.

³Ittelson, W. (1973). Environment Perception and Contemporary Perceptual Theory. In W. H. Ittelson (Ed.), *Environment and Cognition* (pp. 141–154). New York: Seminar.

⁴Hafri, A., Wadhwa, S., & Bonner, M. F. (2022b). Perceived Distance Alters Memory for Scene Boundaries. *Psychological Science*, 19.

SCANN + Is sex associated with pointing task performance? Females: Mean Pointing Error x Group BF₁₀ = 1.35 • Group 2.a. Does iVR affect non-players differently in spatial learning? Mean Pointing Error x Immersion Level x Group player Level + Group BF₁₀ = 0.37 mmersive Immersive 3.a. Do level of immersion affect mental representation scale in non-players? Level + **Closer Responses** Group $BF_{10} = 0.15$ Plaver Small-scale 下不 KN BF₁₀ = 0.44 • group Non-Player

fer in mental representation scale in different sion levels.

Immersive

Desktor

^{Level} BF₁₀ = 0.34

Immersive

Player

Large-scale

wever, we are still recruiting subjects. Improved size may reveal more information about the n between scale and expertise in spatial edge.

